unec

Materials in nanoelectronics EMIRI 30/03/2023

Geoffrey Pourtois – fellow geoffrey.pourtois@imec.be

Transistor densification in CPU's

Moore's law

\sim 57x10⁹ transistors

Apple MI Max (10-cores, 64-bit)

~ 156 x population of US, ~ 7.2 x population of the world in the same conference room,...

public

Transistor densification in CPU's

Imec playground field

Potential roadmap extension

LINCL

	2018	2020	2022	2024	2026	2028	2030	2032	2034	2036
	N7	N5	N3	N2	A14	A10	A7	A5	A3	A2
							C	continued d	imensional	scaling
Metal I	^{Pitch} 40	28	22	21	18	16	16-14	16-12	16-12	16-12
							De	vice and ma	aterial inno	vations
Metal Tra	acks 7	6	6	6	5	5	5	4	<4	<4
	11				=	Ξ	E			
	FinFET	FinFET	FinFET	GAA Nanosheet	GAA Nanosheet	GAA Forksheet	GAA Forksheet	CFET	CFET	CFET Atomic
								Context-a	ware interc	onnect
	000									

public

2025 & data storage about 100ZB/year

I Zettabyte = I billion of Terabytes = I trillion of Gigabytes

Transistor densification in CPU's and memories

Driving factors for innovation

ເງງອ

Speed of learning for material down-selection in their context is critical

The future is complex, multi-functional, 3D, and more than ever, material and process dependent....

unec

Imec semiconductor technology research pillars

Finding the right materials,...

What is the common point between these pictures?

Amorphous SiO₂

Chalcedony spherulites crypto-crystalline fine-fiber of SiO₂

Answers:

- The obvious one: wine
- The less obvious one: SiO₂

Amorphous SiO₂

14 nm transistor technology

ເຫາຍດ

I material = several forms = different functions = different environments

New materials = source of inspiration But also of perspiration,...

4	P&D CMOS & moment today									0							
Ĥ		Rad Chies a memory today											ће				
³ Li	⁴ Be	⁴ Be										5 B	° C	7 N	Ő	۶	10 Ne
¹¹ Na	¹² Mg	¹² Mg										13 AI	¹⁴ Si	15 P	16 S	17 CI	¹⁸ Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga ³¹	Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	⁴⁹ İn	50 Sn	51 Sb	⁵² Te	53 	54 Xe
55 Cs	⁵⁶ Ba	71 Lu	⁷² Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	Rg	112 Cn	113 Nh	114 FI	115 Mc	116 LV	117 TS	118 Og
			57 La	58 Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	Gd	65 Tb	66 Dy	67 Ho	Er Er	⁶⁹ Tm	70 Yb	
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	

- One material = different functions & phases
- I 18 space dimensions + process & application dependencies
- And nothing guarantees that the resulting device performances will made it @ the system level

Need "smart" data driven choices of "context aware" materials

The structure has become very complex DRAM

[1] <u>http://semimd.com/chipworks/2014/02/07/intels-e-dram-shows-up-in-the-wild/</u>
[2] DRAM: Hybrid memory cube – Micron
[3] e-DRAM-22nm Intel

Interfaces start to dominate (< 5nm)

When individual atoms start to matter

- Finite size effects on the electronic structure
- Non-linear behavior of nanometer thick film v.s. bulk
- Interfaces effects start dominating
- Stochasticity plays an important role
- Properties of the stack \neq sum of isolated materials

Material and technology

MATERIAL TREE

Challenges:

- Abundancy of reports and of possible solutions
- Confusing literature no clear benchmarks, results are process and methodology dependent,...
- No clear winner(s)

ເກາຍc

Material journey: From concept to 300mm angstrom material pilot line

Material journey: from concept to 300mm angstrom Material pilot line

Ex: material requirements for Ovonic Threshold Switch (OTS) Device specifications

Selector devices

Device requirements

- Integration , Device & circuit related constraints
 - Current density > 10⁷ A/cm²
 - Non-linearity (NL = I_{on}/I_{off}) > I_{06} @ J_{max}
 - $V_{th} > 2$ Volts
 - T>400°C

Material requirements

- Mobility gap $\geq 1.5 \text{ eV}$
- Low density of defects (10¹⁹cm⁻³)
- $T_{cryst}/T_{melting} \ge 400 \ ^{\circ}C$
- Low T deposition, conformality
- Material thickness min: 4 nm

Material selection for OTS

I. Data mining

2. Down selection

public

Step function: 0 = no problem 1 = problematic

Material index

Contextual guidance for material selection

Index = <# Elts/layer> + Oxid. stage + Int. switch + Adhesion + Etch + Quality growth T < 400°C + Reactivity + Phase + Ease of deposition + Env. Impact + Conformality

ເງຍອ

Gap analysis: material screening, in-situ interface control, etching and advanced physical characterization are keys

Material journey: from concept to 300mm angstrom Material pilot line

Bulk material properties \neq thin film properties Stack properties $\neq \Sigma$ thin film properties $\rightarrow \Sigma$ (interface + material)

ເງຍອ

Methodology for accelerated material developments

Accelerated development of new conductor materials

Material journey: from concept to 300mm angstrom material pilot line

Lab	• De	efine problem & opportunity statement \rightarrow functional materials
Virtual & proof of	• Scr • Scr	reening and selection : atomistic & device simulations, lab experiments t-up collaborations with academic centers of excellence
	Lab2Fab Phase I : Explo	 Screening : identify materials with tailored properties Processing : definition of process windows Understanding : impact of interfaces Specs for alpha tool development Explore compatibility with integration (passive materials & corrosive gasses)
"One introductic	time right" on in 300mm Fab	Lab2FAB + Fab : hybrid process modules • Ecosystem : co-develop materials with suppliers • Phase 2 : Pathfinding • Upscale defined process windows to 12 inch • Demonstration of generic modules in 12 inch • Alpha tool development (JPD)

Criterion for the selection of materials does not come through properties only : constraints bound to integration schemes & processes for module development also need to be accounted for

Methodology to define project infrastructure : gap analysis

- Conceptual process flow :
 - Complex & convoluted problem
 - Key questions & minimal spec definition
- Deconvolution into problem statements
- Strategy to tackle different key problems :
 - Gate stack, contact, doping strategy,...
- Target :
 - 300mm tool specifications
- List of equipment needs and specs for device demonstration :
 - In house tools
 - Gap definition
 - Existing tools (not in house)
 - Tools to be developed (engagement with tool suppliers)
 - Metrology needs

Development Phases of 300 mm angstrom Material pilot line

Lab Virtual & p	 Define problem & opportunity statement → functional materials Data mining : literature screening Screening and selection : atomistic & device simulations, lab experiments Set-up collaborations with academic centers of excellence
	 Lab2Fab Attolab, M&I Lab Phase I : Explore Screening : identify materials with tailored properties Processing : definition of process windows Understanding : impact of interfaces Specs for alpha tool development Explore compatibility with integration (passive materials & corrosive gasses)
	 Lab2FAB + Fab: hybrid process modules Ecosystem : co-develop materials with suppliers Upscale defined process windows to 12 inch Demonstration of generic modules in 12 inch Alpha tool development (JPD)
	Fab-pilot line: Integrated device Development of production tool Phase 3: development • Demonstration of integrated product • Pilot line : beta tools (tier I & 2 vendors)
່ເກາຍເ	Production

Investment ~2.5B€

umec

N.

Guided tour next

Electronic industry = $\sim 4\%$ world CO₂ emission Can imec contribute to the reduction of the footprint ?

Ex: hydrogen circularity in EUV lithography at imec

- H₂ is essential for EUV scanner functionality
- H₂ has a relatively high GWP₁₀₀ factor of 12.8*
- Initial test for recycling hydrogen at imec in 2022
 - No adverse effects observed on scanner
 - H_2 consumption reduced by 70%
 - Anticipate 80% reduction in the future
- Life Cycle Analysis (LCA) applied to quantify benefit
 - 4 scenarios modelled using primary material flow data from Edwards
 - 1. Standard abatement (combustion with natural gas)
 - 2. H₂D (H₂ dilution with air before direct emission)
 - 3. HRS + standard abatement (H₂ recycling & combustion)
 - 4. HRS + H_2D (H_2 recycling & H_2 dilution)
- A sensitivity analysis was done to access the impact of reducing the electricity carbon intensity and using a non-fossil-based source of H₂

For more information see: Sustainable semiconductor manufacturing: Lessons for lithography and etch | SPIE Advanced Lithography + Patterning

unec

Results

- H₂ dilution results in the smallest reduction of environmental impact in comparison to standard abatement. Due to H₂ contributing to scope I emissions.
- HRS further reduces environmental impact
- HRS + H_2D results in the best environmental performance
- Reduction of environmental impact by up to 72% by using 'greener' alternatives for electricity and hydrogen production.

Imec member of SEMI circularity working group

Being a part of the SEMI circularity working group, imec has **access to a repository of industry best practices** and discusses current **challenges** facing the industry with regards to materials and the **circular economy**.

public

embracing a better life