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Transistor densification in CPU’s

Moore’s law
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7.9 billion 57 billion

[1] Source: wikipedia.org

~57x107? transistors

Apple MI Max (10-cores, 64-bit)

~ 156 x population of US,
~ 7.2 x population of the world
in the same conference room,...
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Transistor densification in CPU’s
Imec playground field
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Potential roadmap extension
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Transistor densification in CPU’s and memories
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Driving factors for innovation



Technology transitions

Materials &
processes
A
Compute
efficiency,
system level
Log scale
Is making the success of 3D
heterogenous integration:
optical components, O
memory,...
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technology design benchmarks
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scaling rescarch programs
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Speed of learning for material down-selection in their context is critical

Ultra low power, high speed memories
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Current projection > 100 potential
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‘umec The future is complex, multi-functional, 3D, and more than ever, material and process dependent.... -



Imec semiconductor technology research pillars
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Finding the right materials,...

What is the common point between these pictures?

Amorphous SiO, Chalcedony spherulites Amorphous SiO, 14 nm transistor technology
crypto-crystalline fine-fiber of SiO,

Answers:
=  The obvious one: wine
=  The less obvious one:SiO,

| material = several forms = different functions = different environments
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New materials = source of inspiration
But also of perspiration,...
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R&D CMOS & memory today
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*  One material = different functions & phases

= |18 space dimensions + process & application
dependencies

*  And nothing guarantees that the resulting device
performances will made it @ the system level

Need “smart” data driven choices of “context aware” materials

12

public



[ 1] http://semimd.com/chipworks/20 | 4/02/07 intels-e-dram-shows-up-in-the-wild/

[2] DRAM: Hybrid memory cube — Micron

The structure has become very complex reommzzm i

DRAM
Memory cube 3D stacking [1]
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http://semimd.com/chipworks/2014/02/07/intels-e-dram-shows-up-in-the-wild/

Interfaces start to dominate (< 5nm)
When individual atoms start to matter

= Finite size effects on the electronic structure

= Non-linear behavior of nanometer thick film v.s. bulk
= Interfaces effects start dominating

= Stochasticity plays an important role

= Properties of the stack # sum of isolated materials

Magnetic RAM SiGe FinFET’s FinFET
multilayered materials gate stacks
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Material and technology
MATERIAL TREE
Ferroelectrics

J"‘i . Low-x
Magnetic W], i
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~ Thermal

Groups IV and IlIIV

Charge storage layers o .
e 3N semiconductors
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Phase change‘;, N b §
. 2D material

Conductor (metal,
* . supraconductor,..)
1 ... Oxides
Topological ™ *~== D oping

insulators 3
Metal for gating
TECHNOLO REQUIREMENTS
Challenges:

= Abundancy of reports and of possible solutions

= No clear winner(s)
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= Confusing literature — no clear benchmarks, results are process and methodology dependent,...
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Material journey:
From concept to 300mm angstrom material pilot line



Material journey: from concept to 300mm angstrom Material pilot line

Lab

* Define problem & opportunity statement = functional materials

* Data mining : literature screening

* Screening and selection : atomistic & device simulations, lab experiments
* Set-up collaborations with academic centers of excellence

Virtual & proof of concept

Literature Data mining Virtual material screening — ab initio
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Ex: material requirements for Ovonic Threshold Switch (OTY)

Device specifications

Selector devices Ideal L.V profile

Device requirements

* Integration , Device & circuit related

J < '/
’ o -7 ]
c R4
8 /’/ : | |
5 (O
y v S
Voltage (V) .
“umec g

constraints

Current density > 107 A/lcm?
Non-linearity (NL = 1_,/l¢) > 10° @ J,.x
V,, > 2Volts

T>400°C

@

Material requirements

Mobility gap > 1.5 eV

Low density of defects (10'%cm-3)
Teryst! Tmetting = 400 °C

Low T deposition, conformality
Material thickness min: 4 nm
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Material selection for OTS

|. Data mining
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2. Down selection
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Ex: modeling screening of As/Se-free OTS materials
|dentifying materials with tailored electrical properties

Selector for RRAM
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Step function:
0 = no problem
| = problematic

Material index
Contextual guidance for material selection

Index = <# Elts/layer> + Oxid. stage + Int. switch + Adhesion + Etch + Quality growth T < 400°C + Reactivity + Phase + Ease of deposition + Env. Impact + Conformality

Materials _ 2030 N
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: ) A SiN ! channel © O O
Gate dielectric si02 }02 : ! 6 6 6
_| 1 2D based o
A A :_ channel o 8 © é @ 0 6 9
Channel Si SiGe : | @ - 0
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Material complexity index Material complexity index
‘lmec Gap analysis: material screening, in-situ interface control, etching and advanced physical characterization are keys
21
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Material journey: from concept to 300mm angstrom Material pilot line

Lab

Virtual & proof of concept

* Define problem & opportunity statement = functional materials

¢ Data mining : literature screening

* Screening and selection : atomistic & device simulations, lab experiments
* Set-up collaborations with academic centers of excellence

“mmec

-

Lab2Fab  Attolab, * Screening : identify materials with tailored properties
M&I Lab + Lab * Processing : definition of process windows
* Understanding :impact of interfaces
* Specs for alpha tool development
* Explore compatibility with integration (passive materials & corrosive gasses)

Phase | : Explore

“The interface is the device”
(Herbert Kroemer)

Horizon 2030 “God made the bulk, the surface was

invented by the devil” (Wolfgang Pauli)

Functionality

2020: device steered by bulk 2030+ : device steered by interface

Bulk material properties # thin film properties
Stack properties # % thin film properties = I (interface + material)

22
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Methodology for accelerated material developments
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Accelerated development of new conductor materials

Ab initio calculation of electronic structures
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Material journey: from concept to 300mm angstrom material pilot line

Lab

* Define problem & opportunity statement = functional materials

* Data mining : literature screening

* Screening and selection : atomistic & device simulations, lab experiments
* Set-up collaborations with academic centers of excellence

Virtual & proof of concept

Lab2Fab  Screening : identify materials with tailored properties
* Processing : definition of process windows

) * Understanding : impact of interfaces
Phase | : Explore
* Specs for alpha tool development
* Explore compatibility with integration (passive materials & corrosive gasses)
Lab2FAB + Fab : hybrid process modules

* Ecosystem : co-develop materials with suppliers
' “Ong time right” Phase 2 : Pathfinding * Upscale defined process windows to |12 inch
introduction in 300mm Fab » Demonstration of generic modules in 12 inch

* Alpha tool development (JPD)

y

Criterion for the selection of materials does not come through properties only :
constraints bound to integration schemes & processes for module development also need to be
accounted for

“mmec e _
public



Methodology to define project infrastructure : gap analysis

performance

‘unec
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Ovarnel

OPTIONS AND DECISIONSTO REALIZE

MX; - material choice

Fab

Channed mater sl groweh

Gap analysis - Hardware

h

= in house
= existing but not in house
= to be developed

= no specifications possible yet

CONCEPTUAL DEVICE FLOW FOR MX, ANGSTROM DEVICE

Channel module

MX, INTEGRATION PLATFORM

\

MX; PILOT LINE DEVELOPMENTANDTOOLS

In-house Epsilon =>Aiu e (2020) = Tier | suppli
200!
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Conceptual process flow :

Complex & convoluted problem
Key questions & minimal spec definition

= Deconvolution into problem statements
= Strategy to tackle different key problems :

* Target:

List of

demonstration :

Gate stack, contact, doping strategy,...

300mm tool specifications

equipment needs and|specs for device

In house tools
Gap definition
= Existing tools (hot in house)
= Tools to be developed (engagement
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Development Phases of 300 mm angstrom Material pilot line

Lab * Define problem & opportunity statement = functional materials

* Data mining : literature screening
* Screening and selection : atomistic & device simulations, lab experiments
* Set-up collaborations with academic centers of excellence

Virtual & proof of concept

Lab2Fab Attolab, * Screening : identify materials with tailored properties

M&l Lab * Processing : definition of process windows
Phase | : Explore * Understanding : impact of interfaces
* Specs for alpha tool development

* Explore compatibility with integration (passive materials & corrosive gasses)
Lab2FAB + Fab: hybrid process modules

* Ecosystem : co-develop materials with suppliers
Phase 2 : Pathfinding * Upscale defined process windows to |2 inch
* Demonstration of generic modules in 12 inch
* Alpha tool development (JPD)

Fab-pilot line: Integrated deyice . Development of production tool

Phase 3: development * Demonstration of integrated product
* Pilot line : beta tools (tier | &2 vendors

—»

y
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Guided tour next
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Electronic industry = ~ 4% world CO, emission
Can imec contribute to the reduction of the footprint ?



GWP= Global warming potential

Ex: hydrogen circularity in EUV lithography at imec

= H,is essential for EUV scanner functionality
= H, has arelatively high GWP,, factor of 12.8*
= |nitial test for recycling hydrogen at imec in 2022

Environmental impact 'grey' vs 'green’ alternative comparison

o
o

o
wn

= No adverse effects observed on scanner

<
IS

4%

72% T

= H, consumption reduced by 70%

= Anticipate 80% reduction in the future

o
w

o
)

= Life Cycle Analysis (LCA) applied to quantify benefit 59%

= 4 scenarios modelled using primary material flow data
from Edwards

<
<

©
o

Environmental Impact [kg CO2 eq/ wafer]

1 Standard abatement (combustion with natural gas) 0.0
2 H.D (H dilution with air before direct emission) Scenario 1: Current Scenario 2: H2D Scenario 3: HRS + Scenario 4: HRS + H2D
’ 2 2 status (standard standard abatement
3. HRS + standard abatement (H, recycling & combustion) abatement)
4, HRS + H,D (H, recycling & H, dilution)
=  Asensitivity analysis was done to access the impact Results
of reducing the electricity carbon intensity and !—|2 d||ut|or.1 results in the smallest reduction of enV|ronn.1entEaI impact
) . in comparison to standard abatement. Due to H, contributing to
using a non-fossil-based source of H, scope | emissions.

HRS further reduces environmental impact
HRS + H,D results in the best environmental performance
Reduction of environmental impact by up to 72% by using ‘greener’

. ] r — S alternatives for electricity and hydrogen production.
. umec Hauglustaine et al, 2022 ED WARDS

For more information see: Sustainable semiconductor manufacturing: Lessons
for lithography and etch | SPIE Advanced Lithography + Patterning
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https://spie.org/advanced-lithography/presentation/Sustainable-semiconductor-manufacturing-Lessons-for-lithography-and-etch/12499-31?enableBackToBrowse=true&SSO=1
https://spie.org/advanced-lithography/presentation/Sustainable-semiconductor-manufacturing-Lessons-for-lithography-and-etch/12499-31?enableBackToBrowse=true&SSO=1

Imec member of SEMI circularity working group 5 semil

Being a part of the SEMI circularity working group, imec has access to a
repository of industry best practices and discusses current challenges facing
the industry with regards to materials and the circular economy.

SEMI Sustainability Initiative

Ambition-

Approach

scC

Sustal inﬂbility Gaoveming

Advory counel manp?:q wo
& Scope 1
co“nﬂl ¥ Emissions
WG

e " Semiconductor Y s
EHs HEALTH AND Climate Consortium Emb‘;;m
IARERY WG

RoHS WG Regulatory, Policy & Climate Focused
Mitigation

Benchmark

PFAS WG

Innovation through collaboration

ESG Focused
REACH WG Water, Waste,
- Justice and Equity

EUMD WG

Government support

As working groups evolve in their
deliverables, they will evolve to
SEMI Standards Task Forces

ating
Standards TF

“mmec d
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New materials & interfaces

2030 +?
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