Innec

OVERVIEW ENERGY ACTIVITIES Embracing a better life

CONTACT

Bart Onsia Senior Business Development Manager Bart.Onsia@imec.be Tel: +32 16 28 8030 +32 486 22 07 44 As a **world-leading R&D** hub, we aspire the impossible and aim for **disruptive innovation**. We maximize societal impact by creating **smart sustainable solutions** that enhance **quality of life**.

At imec, we shape the future.

WORLD-CLASS INFRASTRUCTURE > 12,000 M² CLEANROOM CAPACITY MORE THAN 5,000 SKILLED PEOPLE FROM OVER 95 NATIONALITIES

A TRUSTED PARTNER FOR COMPANIES, STARTUPS & ACADEMIA

World-class infrastructure

Hyperspectral imaging lab & demo room

ntegrated imagers lab

Smart sensor lab

Exascience lab

RF & high-power lab

hotonics labs

Marine Strength Processing and Strength Strength

200mm cleanroom

- Silicon pilot line for prototyping and low-volume man iSiPP200 and iSiPP50G photonics prototyping platform
- 200mm GaN-on-Si platform

and the second states

Quantum computing lab

GaN Lab

300mm cleanroom

- (High-NA) EUV, Attolab, advanced patternin
- State-of-the-art etch, implant, cleaning, metro
- equipment from leading-edge OEMs
- Ballroom type of cleanroom (7,200m², Class 1,000)
- 24/7operational

Cell

- Optical labs
- Wet chemistry labs
- Clinical labs
- Pre-PCR lab
- Neuropixels

Energy Storage & Conversion

- Materials and interphases
- Battery lab (coin cells)
- Electrolyzer lab (atmospheric single cell)

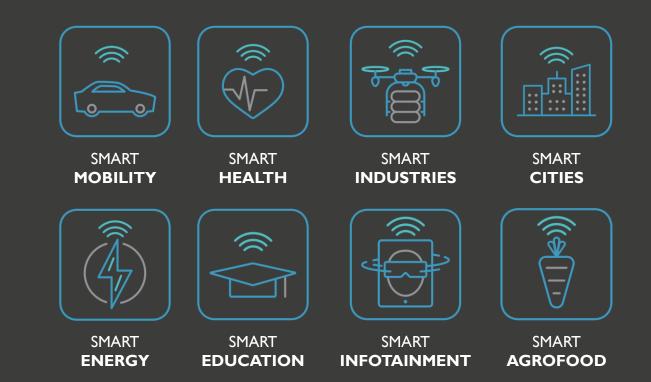
Energyville, upscaling energy innovations

PV, Storage & Conversion labs

- Ballroom I 500m² (500m² not yet allocated) + dry room I 00m²
- Wafer based PV module lab
- Thin film PV lab
- Battery lab for solid state LiM batteries
- Power to molecules lab (electrode & membrane manufacturing)
- BIPV outdoor test setup

PV characterisation

- Indoor wide spectrum testbench
- Reliability lab
- Outdoor PV testbench

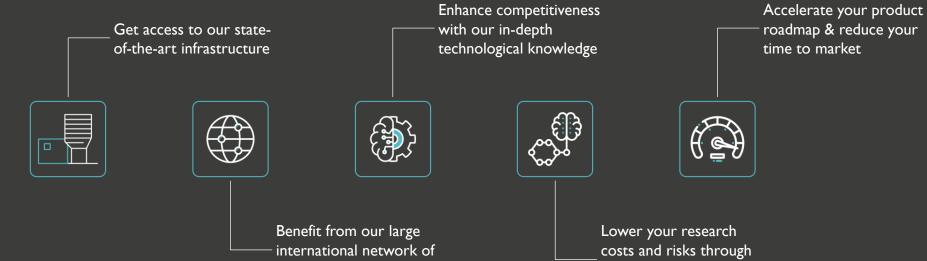

Virtual tour: https://www.energyville.be/nieuws-events/digitale-energietour-door-onze-labos

Imec's strategic guidelines

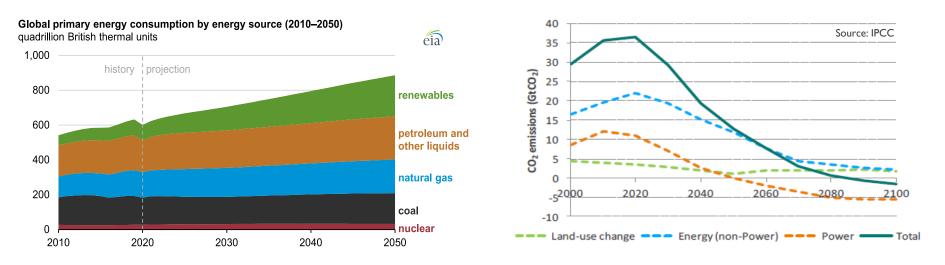
Imec will continue to drive semiconductor functional scaling expanding its nanotechnology expertise.

Imec thrives on connecting the grand challenges with our strength in pioneering nanotechnology creating a sustainable society.

What we offer


What we offer

R&D collaboration models answering your needs


expertise

umec

pre-competitive

collaboration

THE ENERGY CHALLENGE MATCHING GROWING CONSUMPTION AND LIMITS ON EMISSIONS

ENERGY TRANSITION

Towards a future with energy at a marginal cost without harmful emissions

UNDEC

ENERGY RESEARCH @IMEC

Providing technology to transition to a carbon neutral society

Energyville, a leading energy R&D collaboration

Energyville, a leading energy R&D collaboration

imec is partner in EnergyVille A Flanders-based energy research consortium in Genk (BE)

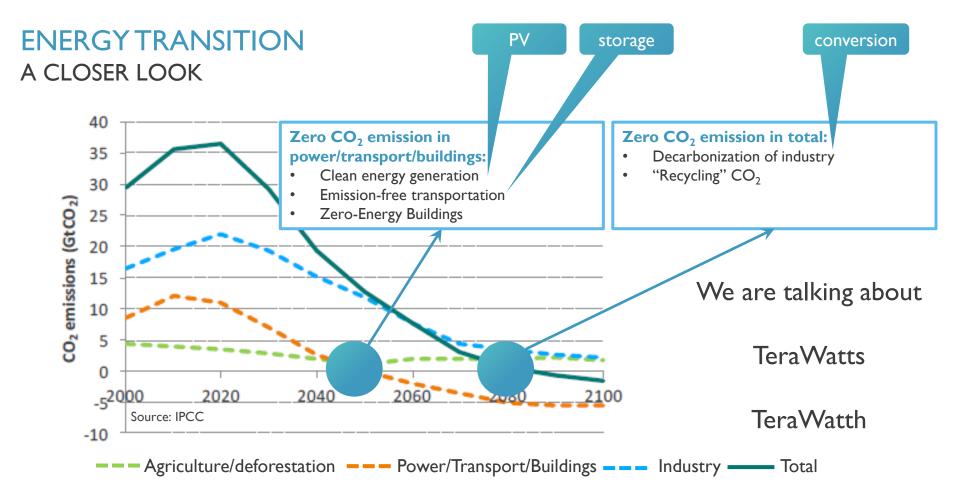
< vito

Energy technology
 Thermal energy systems
 Battery management
 Sustainable cities

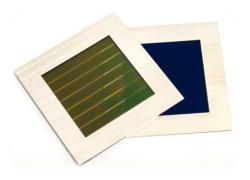
KU LEUVEN

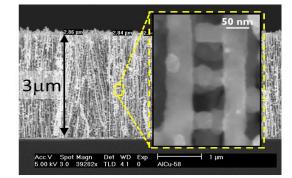
Electrical engineering Building physics Mechanical engineering

unec


Photovoltaic research
 (Solid-state) batteries
 Power to Molecules
 Power devices
 Energy yield forecasting
 Energy management

Energy


Innovative materials
 PV and system reliability



ENERGY@IMEC

Generation

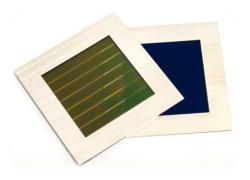
PV technology

- Tandems cells/modules
- Integrated PV
- Design and O&M

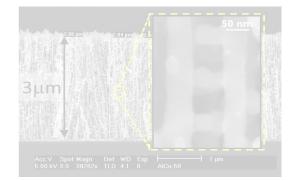
Storage

Batteries

- Novel electrolytes/electrodes
- Battery cell technology


Conversion

Power-to-Molecules


- Hydrogen generation
- CO₂-conversion

ENERGY@IMEC

Generation

PV technology

- Tandems cells/modules
- Integrated PV
- Design and O&M

Storage Batteries

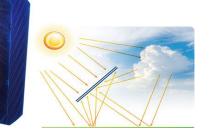
- Novel electrolytes/electrodes
- Battery cell technology

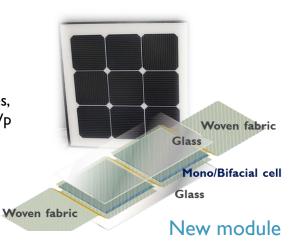
Conversion

Power-to-Molecules

- Hydrogen generation
- CO₂-conversion

IMEC PV TECHNOLOGY HIGHLIGHTS

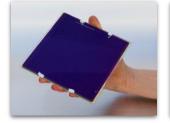

Better monofacial Si solar cells


~23%, certified, industrial size, industrial processes

Better bifacial Si solar cells

~23%, industrial size, industrial processes, >95% bifacial, more kWh/kWp

interconnection techniques


Simplified manufacturing, higher reliability, allowing mass customization

Perovskite thin film PV

Focus on large area, high efficiency, stability, industrialization Achieving $\sim 13\%$ for $30 \times 30 \times 30$ cm²

SOLLIANCE

SOLAR RESEARCH

umec

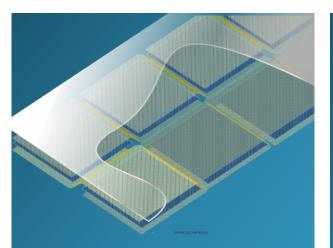
Silicon-thin film tandem solutions achieving 30.1%

PV TECHNOLOGY

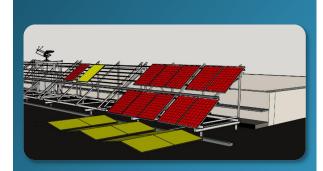
Cell: focus on back-end (advanced metallization) Module: interconnection technologies

Integration of PV in building façades, vehicles and infrastructure

PV cell and module analysis and performance optimization


PV energy yield metrology, simulation & forecasting

PV module reliability, recycling and re-use



WAFER-PV MODULES AND SYSTEMS OVERVIEW

Accurate energy yield simulations

MODULE ASSEMBLY CAPABILITIES

Lamination

- Modules up to 1.1x1.8 m2, 15 cm thick (can be curved)
- Single- or double-membrane, accurate pressure control
- Uniform heating (±1°C) up to 180°C

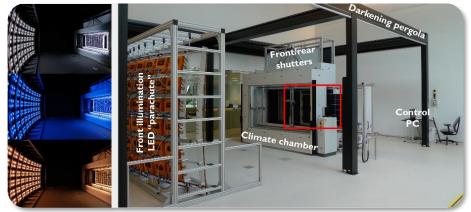
Semi-automated tabbing-stringing

Industry-like soldering process

Automated module manufacturing for new technologies (shingling, woven fabrics,...)

- Up to full-size modules
- Pick & place, dispensing, lasering, soldering

MODULE CHARACTERIZATION AND TEST CAPABILITIES


Solar simulation (up to 1.1x2.0 m2)

- I8-LED tunable spectrum
- Module temperature control 10 80°C
- Light intensity control (0.1 1.2 sun)
- Rear illumination (bifacial modules) (also EL inspection & EQE-Reflection)

Outdoor testing

- Open rack South
- BIPV (facade) East, South and West

Reliability testing (up to full-size modules)

- Thermal cycling, damp heat, 3xUV testing
- PID (>1000V)

PLANNED INVESTMENTS IN 2022/2023

Thanks to PV4Industrie4.0 (EFRO) project with U Hasselt + Soltech

Multi-BB stringers (imec + Soltech):

- Soltech: production stringer for M10 PERC 10BB
- Imec: R&D stringer for PERC/TOPCon/HJT/IBC

Large area climatic chamber (U Hasselt):

- modules up 2.5m, total mass up to 600 kg
- for TC, DH, HF, PID, etc. testing

Large area A+A+A+ flasher (imec):

working area up to 2.6x1.4m

unec

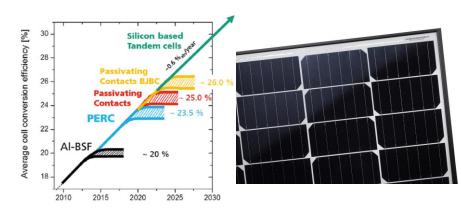
▶ UHASSELT

A+A+A spectrum (300-1200nm),

• Fiber gratings and other tools (U Hasselt):

Goal: make our own fiber gratings for in-situ sensing

O


test area of 2.6m x 1.4m

ADVANCED INTERCONNECTION TECHNOLOGIES

Compatible with latest cell technologies

Industry needs:

- compatibility with latest cell technologies (PERC, TOPCON/HJT, IBC, Pk tandems)
- reduced cell-to-module (CTM) losses
- robust and cost-effective technologies

M. Hermle, Solar Industry Forum 2017, EUPVSEC Amsterdam

• Our focus:

- Market research (technology watch, etc.)
- State-of-the-art stringing technologies:
 - patented imec's multiwire (TWILL, 3D weave)
 - multi-BB IR soldering
 - shingling for Pk tandems
- accelerated reliability testing (TC, DH, HF, ML, insitu sensing, etc.)

Multi-BB IR soldering

Busbarless TOPcon + imec's TWILL technology

shingled strings

Busbarless IBC + imec's 3D weave

OPTIMIZED DESIGN OF SEMI-FABRICATES AND MODULES FOR INTEGRATED PV

BIPV, VIPV, UPV, IIPV, Agri-PV, Space PV, etc.

Industry needs:

- Increase adoption of integrated PV to support energy transition (self-consumption, etc.)
- Better integration (aesthetics, modularity, etc.)
- Lower engineering and manufacturing costs

Building-integrated PV (BIPV)

Infrastructure-integrated PV (IIPV)

Agrivoltaics (Agri-PV)

Urban PV (UPV)

Space PV (SPV)

Our focus:

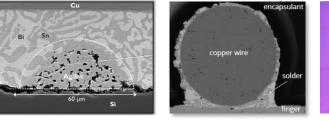
- Tailor module designs based on end-user requirements (aesthetics, safety, costs, etc.)
- Flexible automated manufacturing (pick-andplace)
- Digitalization (support BIM modeling, industry4.0)
- Strong partnerships with regional and global PV manufacturing value chain

BIPV curtain wall demo

Sound barrier wall demo

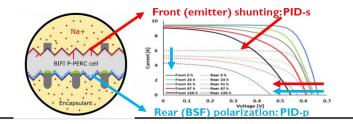
VIPV sunroof concept

Agri-PV demo



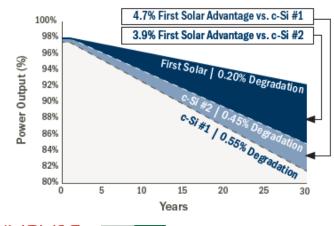
ADVANCED RELIABILITY TESTING

Climatic chambers (modules up to 2m height)


- IEC61215/IEC61730:
 - Thermal cycling, damp heat, humidity freeze, 3x UV
 - Sequential testing
 - Low T storage at -40C for 48h
 - PID >1000V
- Automotive
 - ECE R43: High T storage at 100C for 120h
 - ISO 4892-2: 1000 W/m² for 2h

Examples of work conducted:

- Accelerated reliability testing of various module types
- 227g ball drop testing of glass and glass-free modules
- Evaluation of new encapsulants, backsheets, etc.
- PID testing of bifacial modules (PERC, TOPCon, SHJ)

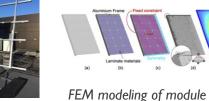


To support lower initial and annual degradation rates

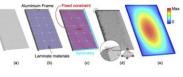
Industry needs:

- Lower initial and annual degradation rates
- Better understanding of root-causes of failures and degradation

First Solar Lifetime Energy Advantage From 30 Year Warranted Annual Power Degradation

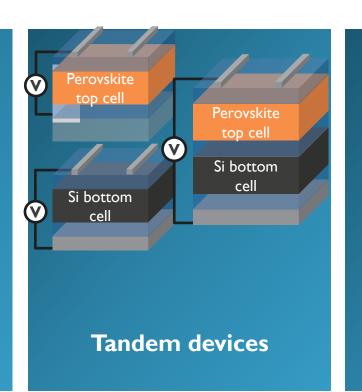


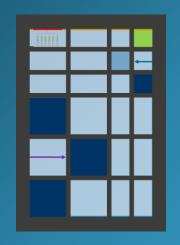
Our focus:


- Failure mode and effect analysis (FMEA)
- State-of-the art characterization tools:
 - Optical/electrical (BTimaging, Wavelabs, LOANA, ...)
 - Mechanical (rheometer, in-situ stress, etc.)
 - Thermal (in-situ temperature measurements, etc.)
 - Reliability (climatic chambers, mechanical load, etc.)
- Advanced modeling:
 - Solar cells (Quokka2/3, Sentaurus, etc)
 - PV modules (SunSolve, CTMcalc, etc.)
 - Finite Element Modeling (COMSOL Multiphysics)

Wavelabs Sinus2100

2-axis tracker




▶▶ UHASSELT

THIN FILM PHOTOVOLTAICS

Device structure: materials, upscaling & reliability

Integration in various applications

The Intervation for life

SOLLIANCE IS A PARTNERSHIP OF EUROPEAN RESEARCH ORGANIZATIONS AND INTERNATIONAL INDUSTRIAL PARTNERS WORKING IN THIN FILM PHOTOVOLTAIC SOLAR ENERGY

SOLLIANCE IS >5000M² OF COMPLEMENTARY TF PV FACILITIES

Solliance/imec in Genk (BE)

Solliance/TNO building in Eindhoven (NL)

TNO

Imec key facilities for perovskites

35x35 cm² linear sputtering and (co-)evaporation cluster system

30x30 cm² picosecond laser scribing

Blade coater (20x20 cm2)

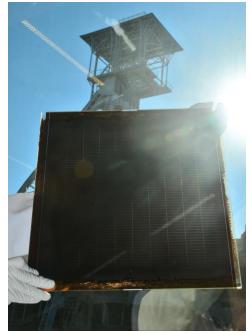
30x30 cm² slot die coating

Module encapsulation

View on processing facilities

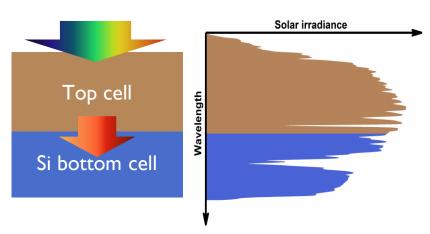

STATUS PEROVSKITE TECHNOLOGY 30 X 30 CM PROCESSING TECHNOLOGY AVAILABLE

- Solliance focuses on
 - upscaling
 - efficiency
 - stability
 - semi-transparent
- Glass or metal based ridged modules
- Sheet to Sheet & Roll-to-roll for flexible modules



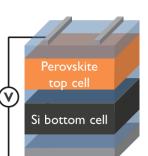
10cm² Module on PET foil

15x15cm² Module on glass



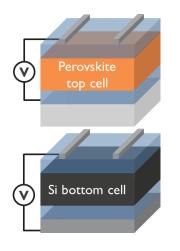
30x30cm² Module on glass (>**13%)**

COMBINE SILICON WITH PEROVSKITES TOWARDS +30% TANDEMS


- More efficient usage of the solar spectrum
- Surpass the theoretical limit of Si-PV

SOLLIANCE

Enhance overall energy yield


umec

Imec works on both 2T and 4T concepts

Two Terminal (2T) PRO

- Less parasitic absorption
- Less exterior electronics
 CON
- Critical current matching
- Perovskite quality influenced by the surface of bottom cell

Four Terminal (4T) PRO

- Independent fabrication and optimization of subcells
- Easy assembly
- Higher energy yield than 2T CON
- More exterior electronics
- More parasitic absorption

Key results: upscaling both 2T and 4T tandems Module-on-module, Scalable 4T Pk/Si tandems 4T Pk/CIGS tandem 16 cm^2 , 20.2% Pk module-on-cell, Cell-on-cell. 4 cm², 25.3% 0.13 cm², 27.1% $16 \text{ cm}^2, 21.3\%$ (24.5% at 0.13 cm² cell-on-cell level) **CIGS** module perovskite module Scalable Pk/Si 2T tandems Hybrid Pk coating: tailoring the Perov Pk depo to Si surface texture Sub-micron texturing: tailoring Si 2 µm **Textured Si** surface texture to std Pk depo Micron-scale Si texture Sub-micron ~25% ~17% $\sim 1 \text{ cm}^2$ ~16 cm² Full wafer size (M2) um Pk/Si cell 2 µm Pk/Si cell Pk/Si tandem demo

ENERGY@IMEC

Electrochemical Storage and Conversion Group

3µm

Generation

PV technology

- Tandems cells/modules
- Integrated PV
- Design and O&M

Storage

Batteries

- Novel electrolytes/electrodes
- Battery cell technology

Conversion

Acc.V Spot Magn Det WD Exp 5.00 kV 3.0 39282x TLD 4.1 0

Power-to-Molecules

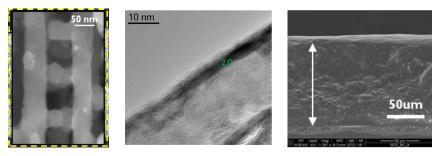
1 um

AICu-58

- Hydrogen generation
- CO₂-conversion

IMEC NANOTECHNOLOGY FOR DISRUPTION IN ELECTROCHEMICAL STORAGE AND CONVERSION TECHNOLOGY

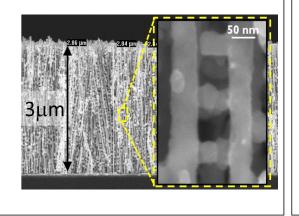
Imec's nanotechnology know-how and expertise brings a very **different angle** to the design of electrodes and reactor components: attention to 'true miniaturization' and control of the interfaces.

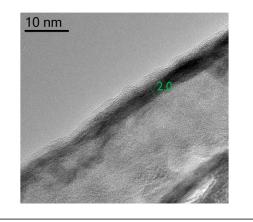

- ightarrow Aiming for disruption in performance
 - to lower the cost of, for example, production of green hydrogen

ightarrow Guided by a technology platform roadmap

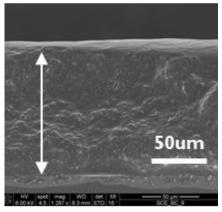
• with increasing complexity in materials and components for next generation technologies

ightarrow Leading to upscale manufacturable processes


- From proof-of-concept in lab to system development
- Nanomaterials
- Surface/Interface engineering
- Thin-film coating techniques
- Electrochemistry
- Nanoionics

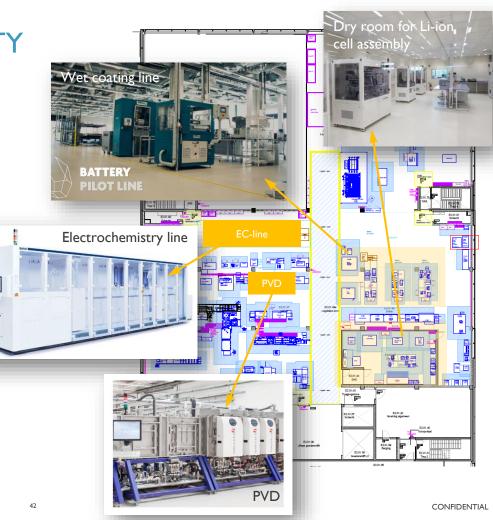


EXPERTISE ON NANO-SCALE (ELECTRO)CHEMICAL FABRICATION CENTERED AROUND THREE TECHNOLOGY BUILDING BLOCKS

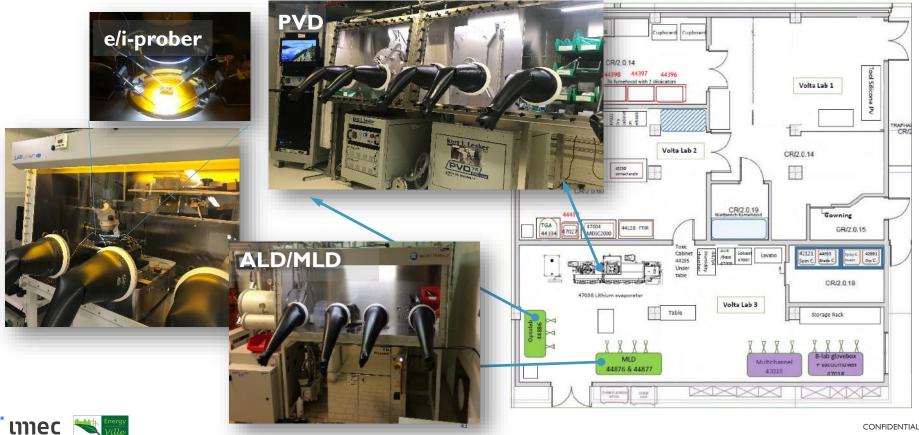

Bottom-up (nano-) structured electrodes with engineered architecture and high-surface area

Thin-film interphase engineering with tailored (electro)chemical properties

nano-composite membranes and electrolytes with configurable chemistry and tunable nano-porosity



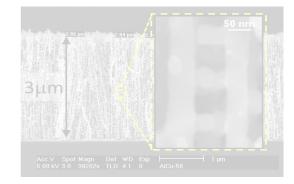
SCALING OUR TECHNOLOGY TOWARDS MANUFACTURABILITY AND PROTOTYPING


EnergyVille is a collaboration between the Belgian research partners KU Leuven,VITO, imec and UHasselt in the fields of sustainable energy and intelligent energy systems.

MATERIALS AND INTERFACE LAB – IMEC LEUVEN THIN-FILM BATTERIES AND ARTIFICIAL INTERPHASE COATINGS

ENERGY@IMEC

Generation


PV technology

- Tandems cells/modules
- Integrated PV
- Design and O&M

Storage

Batteries

- Novel electrolytes/electrodes
- Battery cell technology

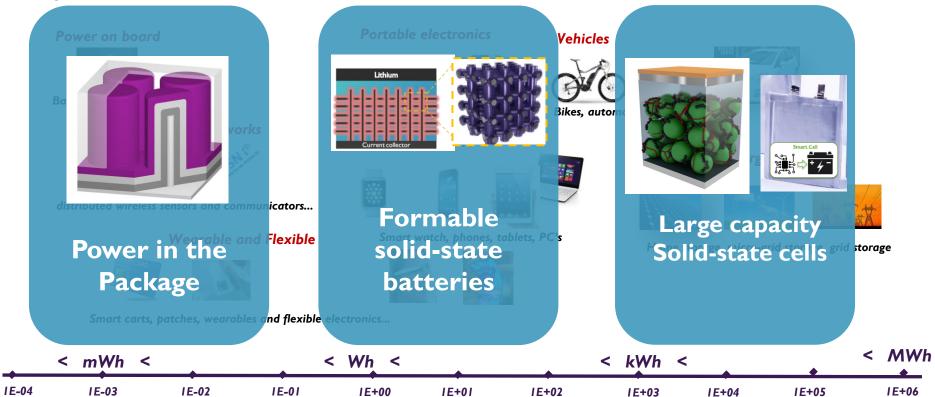
Conversion

Power-to-Molecules

- Hydrogen generation
- CO₂-conversion

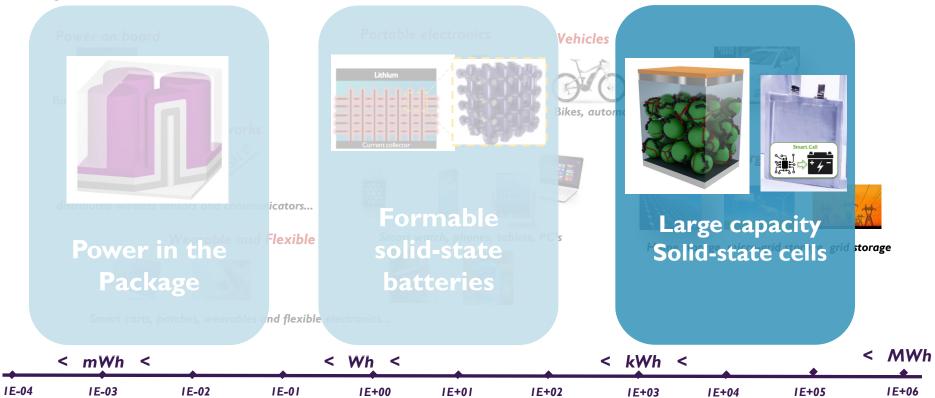
IMEC'S SOLID NANO-COMPOSITE ELECTROLYTE (SCE) ENABLING HIGH CAPACITY – HIGH RATE SOLID STATE CELLS

- 1. We engineer the ion conductivity beyond that of liquid in a solid nanocomposite electrolyte using a proprietary process
 - we are working towards solid electrolytes with ion conductivities towards 100 mS/cm for FAST CHARGING and HIGH POWER cells
- 2. The electrolyte is made from a homogeneous liquid presolution allowing to fill small cavities also
 - A materials strategy is defined to HIGH ENERGY cells with (1) mc

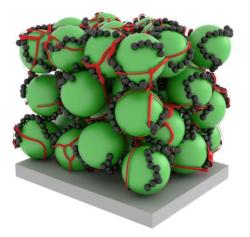


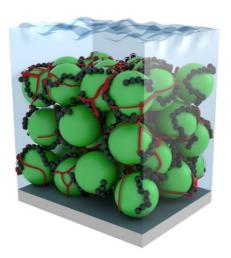
mec

APPLICATION SPECTRUM OF Li-ION BATTERIES

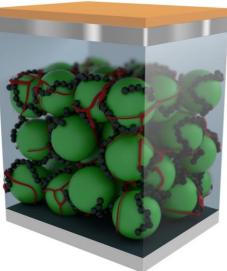

Rechargeable Li-ion batteries

APPLICATION SPECTRUM OF Li-ION BATTERIES


Rechargeable Li-ion batteries


UNIQUE LIQUID-TO-SOLID APPROACH

ADDRESSING MAJOR ISSUES OF SOLID-STATE BATTERIES: MANUFACTURING AND MECHANICAL COMPLIANCE

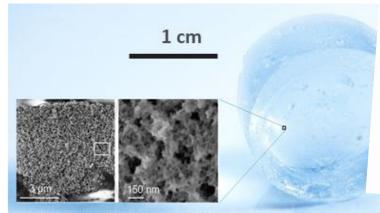

I. Porous cathode

Conventional battery manufacturing

2. Impregnation with liquid precursor

Compatible with conventional battery processing

3. Solidification and lamination with our lithium nano-anode


Elastic materials = mechanically compliant solid-state cell_{FIDENTIAL}

NANOTECHNOLOGY FOR SOLID-STATE BATTERIES SOLITHOR SPINOFF COMPANY OF IMEC

Press release Monday 16 May 2022

Nano-Composite Electrolyte material developed at imec, enabling the costeffective manufacturing of solid-state Lithium Metal Batteries

SEM of nanoporous oxide matrix after removal of the electrolyte

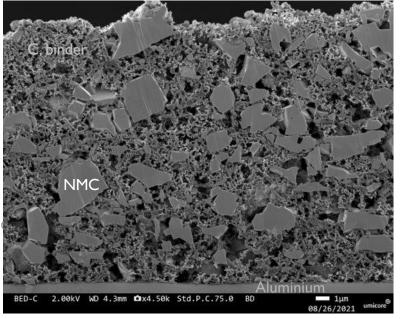
So Li THOR

Imec spin-off SOLiTHOR closes a €10M seed investment round to develop a new disruptive solidstate battery cell technology

Breakthrough approach to solid-state batteries will break the barriers for the electrification of

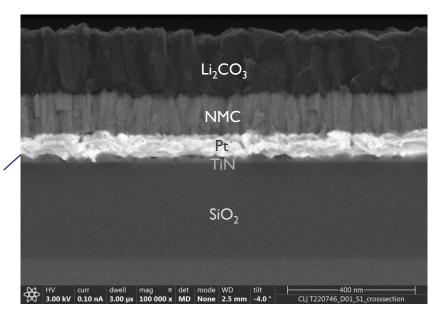
LEUVEN (Belgium) - 16 May 2022 – SOLiTHOR, the newly created spin-off company from imec – partner in the top European energy R&D innovation hub EnergyVille – is spearheading the development, manufacturing and commercialisation of innovative solid-state lithium (Li) battery cell technology to reliably and economically offer high energy storage solutions. SOLiTHOR raised €10M in a seed investment round led by imec.xpand supported by a strong investment syndicate including LRM, Nuhma and FPIM. The proceeds will be used to develop the technology required to enable further electrification of our transport industry with solutions that address current issues in autonomy,

> Imec spin-off SOLiTHOR closes a €10M seed investment round to develop a new disruptive solid-state battery cell technology



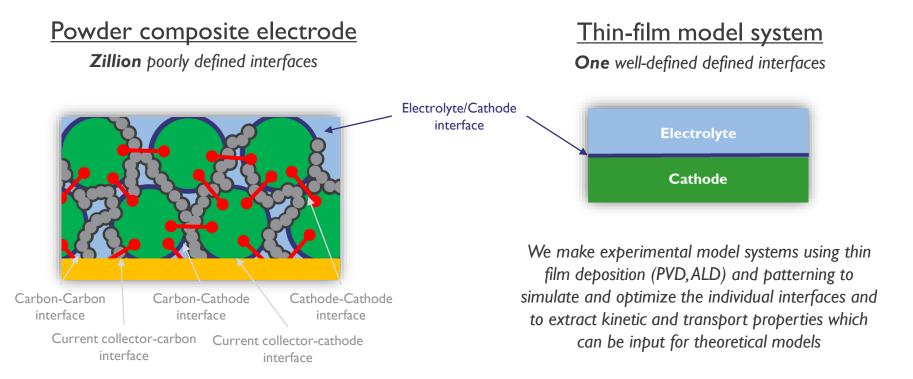
lmec

THIN-FILM MODEL SYSTEM TO SUPPORT INDUSTRY DEVELOPMENTS TO ENGINEER ARTIFICIAL INTERPHASE COATINGS AND STUDY THE INTERFACES


Powder composite electrode

Zillion ill-defined interfaces

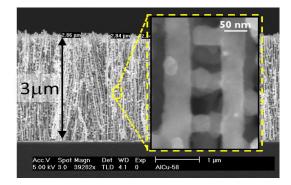
Thin-film model system


Single well-defined interfaces

THIN-FILM MODEL SYSTEM TO SUPPORT INDUSTRIAL DEVELOPMENTS

TO ENGINEER ARTIFICIAL INTERPHASE COATINGS AND STUDY THE INTERFACES

ENERGY@IMEC



PV technology

- Tandems cells/modules
- Integrated PV
- Design and O&M

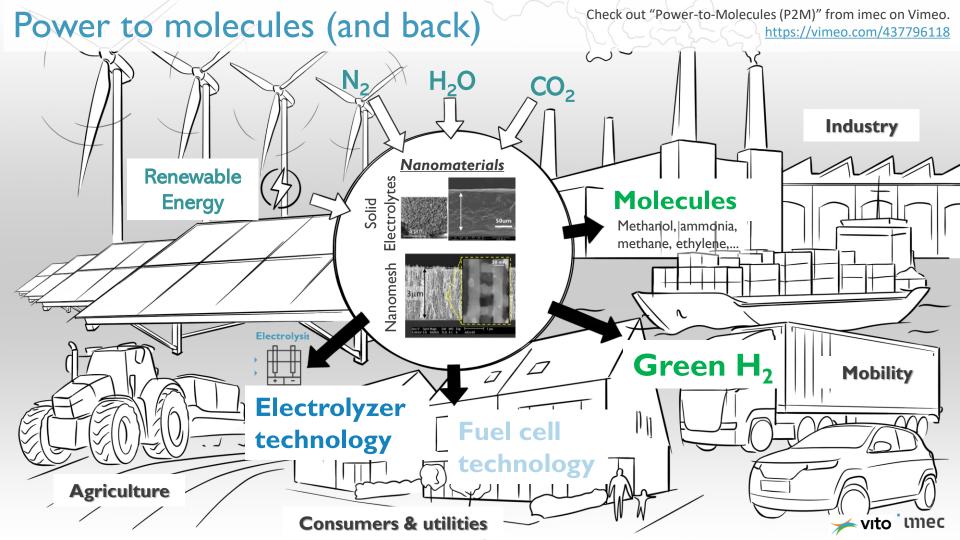
Storage Batteries

- Novel electrolytes/electrodes
- Battery cell technology

Conversion

Power-to-Molecules

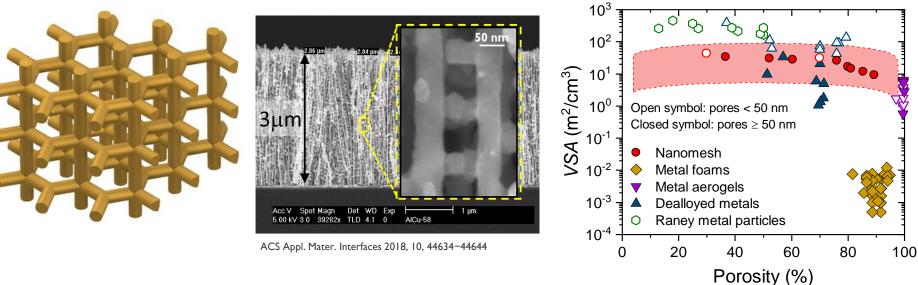
- Hydrogen generation
- CO₂-conversion



POWER-TO-MOLECULES ACTIVITIES

Check out "Power-to-Molecules (P2M)" from imec on Vimeo. https://vimeo.com/437796118

embracing a better life



INTRODUCING OUR NANOMESH ELECTRODES

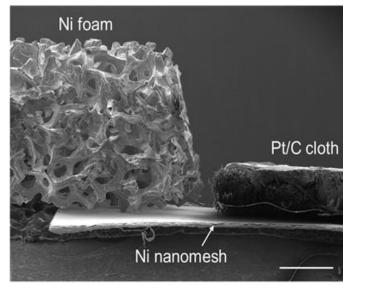
HIGH SURFACE AREA + HIGH POROSITY + MECHANICALLY ROBUST

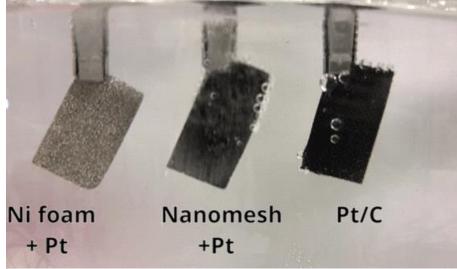
- Very large surface area and large porosity allows miniaturization of MEA
 - The surface area of a soccer field in a can of coke while still 75% empty
- Regularly spacing and highly interconnected nanowire scaffold

INIEC 🗮 Energy

TAL BATTERIES

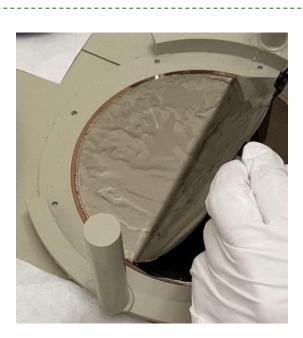
zular" nanospacings 'ifferent from "sponges") nd can help us solve e batteries


standing and flexible


NANOMESH @ WORK

NICKEL NANOMESH VERSUS NICKEL FOAM AND CARBON CLOTH FOR WATER ELECTROLYSIS

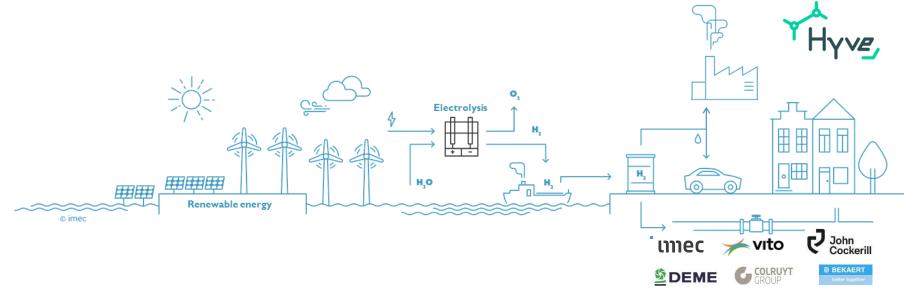
- The 4.75 μm thick nanomesh layer has an area enhancement of 126X
- The 1.5mm thick foam has an area enhancement of ~10x


Example of HER at Ni nanomesh, Ni foam and C-cloth

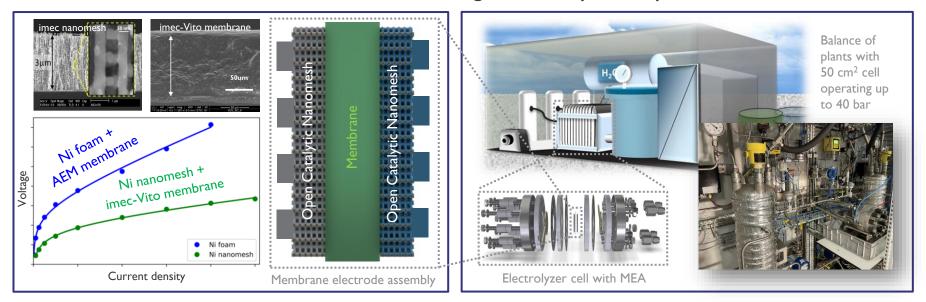
flexible 4.75 μ m thick nanomesh (76% porosity, 64 nm pore size, 126 cm² footprint-normalized surface area

NANOMESH UPSCALING

Lab-scale fabrication 300 cm² nanomesh electrode release from wafer substrate

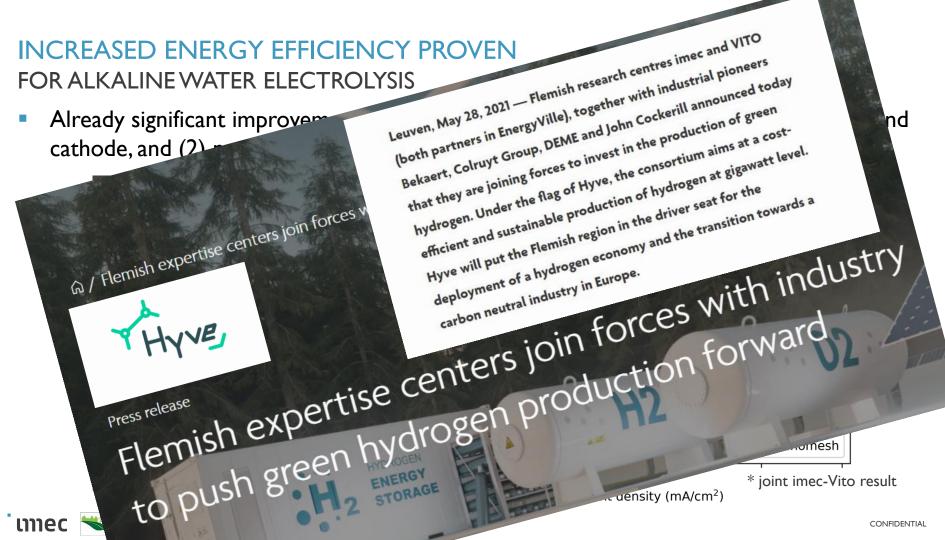


Pilot-scale fabrication 30x30 cm² sheet processing line (900cm² NM electrodes)


FIRST STOP: GREEN HYDROGEN BY ELECTROLYSIS

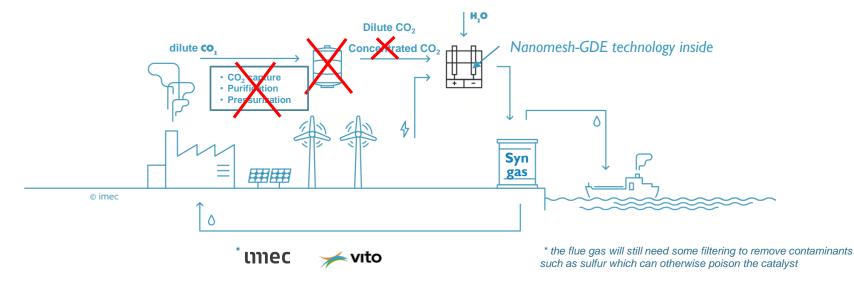
What: Novel MEA and Cell technology for disruption in water electrolyzer technology
 How: imec nanomaterial innovations for catalytic electrodes and electrolyte in collaboration with Vito for membrane technology and system know-how

NANOTECHNOLOGY FOR GREEN H₂


In collaboration with VITO we demonstrated high efficiency on a system level

Membrane electrode assembly (MEA)

H2-gas generation more efficient compared to conventional materials due to nano-technology offering high effective electrode surface area and short ion transport lengths significantly reducing the electrical losses in the MEA Balance of Plants operating the electrolyzer cell H2-gas generation significantly higher compared to classical alkaline electrolyzers when operated at the same cell voltage in realistic operations conditions.



CONFIDENTIAL

NEXT STOP: DIRECT ELECTROREDUCTION OF CO₂ GAS DIFFUSION ELECTRODE: FROM CONCENTRATION TO DILUTE SOURCE

Today: two step process with capture, purification and pressurization of CO_2 + electrocatalytic conversion of CO_2 Tomorrow: electrochemical conversion of dilute CO_2 source directly from flue or process gas*

- Demonstration of high throughput for typical CO_2 concentrations in flue gas (p(CO_2) ~0.1 bar)
- First step: Syngas as "simple" product, then towards more complex molecules (e.g., methanol)

CONTACT

Bart Onsia Business Development Manager Bart.Onsia@imec.be Tel: +32 16 28 8030

embracing a better life

www.imec.be